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A method for construction of vertex graphs and utilization of these graphs in the construction 
of ring systems is described. The method allows construction of vertex-graphs containing ver- 

tices of any prescribed degree, thus extending previous tabulations and removing the restric- 

tion of degree 54. Expansions of the vertex-graphs via constructive graph labeling provide 
exhaustive compilations of possible ring systems. These compilations can also be restricted, 

using constraints supplied at the discretion of the chemist, to particular types of ring systems. 

Vertex-graphs were originally proposed by Lederberg as 

the foundations upon which cyclic molecules can be con- 
structed.3 Vertex-graphs consist of the vertices (“nodes”) 
which represent the points of ring fusions in purely cyclic 
molecules,4-7 together with the paths (“edges”) which in- 
terconnect these nodes.* Because vertices, or nodes, of de- 
gree 2 cannot participate in such ring fusions9 they are, by 
convention, ignored in representations of vertex-graphs. 
Thus, vertex-graphs contain only vertices of degree 3 or 
higher. As examples, consider the molecules bicy- 
clo[2.2.2]octsne (2) and 2,2’-spirobi-2H-indene (4). 

Deletion of the secondary nodes of 2 and 4 and retention 
of the nodes of degree 3 or 4 (boldface) and the paths which 
interconnect them yield vertex-graphs 3 and 5, respective- 
ly. Note that the Spiro center of 4 is included in the vertex- 
graph 5.“,5 Additional examples of vertex-graphs and de- 
scriptions of the method by which vertex-graphs are uti- 
lized for exhaustive construction of isomers are avail- 
able,“,;.‘0 

Existing tabulations, however, of vertex-graphs”,“-‘j 
and the related “multigraphs”“-‘* and “general 
graphs”“-I4 are complete only for trivalent graphs (all 
nodes of degree 3) through ten nodes (see below). These 
tabulations do contain some sets of vertex-graphs possess- 
ing nodes of degree 4 (e.g., 51, but such sets are greatly lim- 
ited compared to those which can be derived by the proce- 
dures discussed in the subsequent section. No tabulation 
contains nodes of degree greater than 4. More general ap- 
plications of our structure generator6~7~10~15 require a more 
extensive set of such graphs, and not only to accommodate 
atoms of potential degree (in ring systems, not considering 
acyclic attachments) greater than 4. An approach to com- 
puter-assisted structure elucidation,15 in which structures 
can be constructed under constraints, needs to deal with 
nodes of arbitrary, potentially high, degree. We describe in 
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the subsequent section a method for automatic construc- 
tion of vertex-graphs which possess nodes of arbitrarily 
high degree. 

Ring systems are a cornerstone of both our conception 
and our representation of molecules which contain both cy- 
clic and acyclic parts. For example, the Chemical Abstracts 
Service Registry System is based partly on an initial classi- 
fication of molecules by ring systems, i.e., molecules 
stripped of acyclic components.“j Important synthetic and 
analytical problems depend, for their successful solution, 
on specification of exhaustive lists of related, usually iso- 
merit, ring systems. For example, both manual and com- 
puter-based methods have been applied recently to a class 
of such problems, interconversion of isomers under con- 
straints derived from knowledge of reaction mechanism 
and chemical stability. Whitlock and Siefken” have ex- 
plored the rearrangement pathways to adamantane, and 
Engler et al. la have analyzed the energetics of these poten- 
tial pathways. Collins and Johnsonlg have studied rear- 
rangements of bicyclo[2.%l]heptyl carbocations under dif- 
ferent assumptions as to the allowed rearrangement path- 
ways. The manual method of Whitlock and Siefken has re- 
cently been emulated in a computer program applied to the 
analysis of diamantane formation from various pentacyclo- 
tetradecanes.‘O These methods1gs20 do not construct iso- 
mers whose structures are inaccessible by the allowed rear- 
rangement pathways. 

We describe in the subsequent section a method for ex- 
haustive generation of ring systems, or generation under 
constraints, with prospective avoidance of duplicates. This 
method, which utilizes constructive graph labelinglO of ei- 
ther the vertex-graphs or cyclic skeletons: derived there- 
from, can specify a variety of types of ring systems. includ- 
ing not only those which are isomeric carbocyclic skeletons. 
but also isomeric skeletons comprised of any number of 
atoms of any atom type. This method can be used to con- 
struct structures (nonisomeric) which share the same basic 
ring system but differ in the numbers of various types of 
atoms of which the ring system is composed. 

METHOD 

Construction of Vertex-Graphs. Balaban”-‘” has sug- 
gested methods for construction of graphs which can con- 
tain nodes of degree 2 through 4 and also single bond bridg- 
es and possibly loops. 

We, however, seek the set of vertex-graphs which con- 
form to Lederberg’s original definition3 These graphs are 
precisely those graphs which are: (11 “bridge’‘-free. i.e.. 
cannot be cut into two parts by scission of an edge” ibi- 
phenyl, for example, contains a “bridge,” the bond con- 
necting the two phenyl rings; this is the graph theoretical 
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definition of “bridge” and will hereafter be enclosed in 
quotes to distinguish it from the word bridge as used in 
chemistry with respect to bridged ring systems), (2) loop- 
free, and (3) contain no nodes of degree 2 or less. These 
graphs are sufficient for our needs because the structure 
generator has the ability to construct “bridged” structures 
from “bridge’‘-free components and to add loops together 
with bivalent nodes where necessary.17J0 

The method described below is implemented in a com- 
puter program (see Experimental Section) so that vertex- 
graphs are constructed automatically. 

Construction of Trivalent Vertex-Graphs. The meth- 
od for construction of graphs possessing nodes of degree 
greater than 3 depends on having a complete set of triva- 
lent vertex-graphs” (all nodes of degree 3). Because ques- 
tions have been raised concerning the completeness of 
Lederberg’s original tabulation (e.g., Balabans has pointed 
out that the Peterson graph, 7, was not included in the tab- 
ulation” of the trivalent graphs of ten nodes), we first con- 
structed the set. of trivalent graphs, starting with the single 
trivalent graph of two nodes, 3. 

Construction of the set of trivalent vertex-graphs con- 
taining n + 2 nodes proceeds from the set of trivalent ver- 
tex-graphs of n nodes (n must be an even integer because 
all nodes are of odd degree) by using the labeling algo- 
rithm’O to place two secondary nodes onto the edges of 
each n node vertex-graph in all topologically distinct ways. 
These new nodes are then connected with an additional 
edge (or bond, if you wish to view the nodes as atoms). Du- 
plicate graphs are not totally avoided by this procedure. 
The labeling procedure provides that no duplicate graphs 
of tz + 2 nodes will arise from labeling the graphs of n 
nodes. But when the new edges are added, duplicates can 
arise. The procedure is illustrated in Scheme I, which trac- 
es the method from graph 3 through the construction of the 
trivalent graphs of six nodes 12-16. 
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There are two unique ways of labelinglO graph 3 with two 
secondary nodes, yielding 8 and 9 (Scheme I). Connection 
of these nodes with an additional edge yields the complete 
set of trivalent graphs of four nodes, 10 and 11. Labeling of 
10 and 11 with two additional secondary nodes yields three 
results for 10 and six results for 11. Connection of the pair 
of secondary nodes with an additional edge yields 12-11, 
derived from 10, and 15-20, derived from 11. Note that 16 
E 18, and 19 E 20, even though the pairs of duplicates 
arise from unique labelings of 11. Addition of the new edge 
produced duplicates. Comparing graphs derived from 10 
and 11, 12 = 17 and 14 = 19 = 20. Nonisomorphic graphs 
12-16 constitute the set of five trivalent vertex-graphs of 
six nodes. Duplicates are removed automatically subse- 
quent to the construction process.22-2” 

The method outlined in Scheme I was used to construct 
trivalent vertex-graphs of 1, 6. 8, 10, and 12 nodes. Results 
are discussed in the subsequent section. .4 proof of the ex- 
haustiveness of the method is given in Appendix A. 

Construction of Vertex-Graphs Containing Nodes of 
Degree 21. A modified method of “node collapse”2’ was 
used to construct vertex-graphs possessing nodes of degree 
~4 in a stepwise manner beginning with the set of trivalent 
graphs constructed above. The method of node collapse is 
exemplified in Scheme II. 

The pair of tertiary nodes (21, Scheme II) upon removal 
of the edge between the nodes followed by a merging of 
them (“node-collapse”i yields a single quaternary node. 22. 
The pair of nodes to be collapsed must he adjacent. Xlulti- 
ply connected nodes. e.g.. 23, are not collapsed OS the result 
is meaningless to this method. Thus. the method requires 
identification of “legal” pairs of nodes which can be col- 
lapsed, where legality is defined by the following criteria: 
(1) the nodes must have the proper degree. e.g., both must 
be tertiary to yield a quaternary node (21 - 22); (2) the 
nodes must be adjacent: (3) the nodes must be singly con- 
nected: and (4) for efficiency, symmetrically equivalent 
pairs of nodes should not be collapsed as this would yield 
duplication. Again, the labeling algorithmlo serves nicely to 
help satisfy these criteria. 

For each member of the appropriate set of vertex-graphs, 
edges (implicitly satisfying criterion 2) which satisfy crite- 
ria 1 and 3 are chosen. A single edge is chosen from this set 
in all unique ways using the labeling algorithm. This satis- 
fies criterion 4. Every labeling then suffers collapse of the 
nodes at the endpoints of the chosen edge to yield the de- 
sired set of graphs. For example. vertex-graphs possessing 
two tertiary and one quaternary nodes, [2 112” graphs, are 

X 22 
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Table I. The Numberof Trivalent Vertex-Graphs of Two 
through Twelve Nodes 

NOdCS No. of Nodes No. of 
(or vertices) graphs” (or vertices) graphsa 

2 1* 8 16* 
4 2* 10 66* 
6 5% 12 365 

” The numbers which are Ltngg& with an asterisk have been verified by 
comparison with ref 3 (except for 7) and 11. 

derived from collapsing a pair of tertiary nodes in the triva- 
lent graphs of four nodes (10 and 11, Scheme II). Of course, 
duplication is not completely avoided as, for example, the 
single representative of [2 l] graphs, 24, is constructed from 
both 10 and 11. Note, however, that use of the labeling al- 
gorithm and edge selection to satisfy criteria 1-4, above, 
drastically reduces the problem of duplication. Thus, prior 
to collapse, the program has identified that there is only 
one unique pair of nodes to collapse in 10, and also only one 
in Il. Duplicates which remain are removed using the pro- 
cedure outlined in ref 23. 

This method is implemented in a completely general 
way, permitting pairwise identification, labeling, and col- 
lapse of any adjacent pair of nodes to yield a new set of 
graphs. Collapse of two adjacent nodes, one of degree m, 
the other of degree p (m need not equal p), yields a single 
node of degree m + p - 2. For example, from the [12] ver- 
tex-graphs we obtain the [lo l] set. Then, we can collapse 
unique tertiary/quaternary pairs in each representative of 
[lo 11 to obtain the set of [9 0 11, then pairs of trivalent 
nodes to obtain the sequence [9 0 l] - [‘i 1 l] - [5 2 11, 
and so forth. Alternatively, [5 2 l] can be obtained by the 
path of generation [lo l] - [8 21 - [6 31 - [5 2 11. Dupli- 
cation can, in some cases, be kept to a minimum by simul- 
taneous collapse of several pairs of nodes, the correspond- 
ing edges having been selected by the labeling algorithm.22 
However, the results presented subsequently in Table II 
were determined using the method described above. 

In this way we constructed all possible sets of vertex- 
graphs which can be derived from trivalent vertex-graphs 
possessing up to 12 nodes. A proof that this method is ex- 
haustive and independent of the path of generation is given 

in Appendix B. Results are summarized in the subsequent 
section. 

Construction of Ring Systems. Ring systems are sys- 
tems which possess nodes of degree 2 and higher, but do 
not contain “bridges” or acyclic parts. Thus ring systems 
(devoid for the moment of atom names) differ from vertex- 
graphs only in that the former may contain any number of 
nodes of degree 2 and may possess the types of Spiro cen- 
ters discussed in ref 4. The structure generator’ contains 
the requisite functions for expansion of the vertex-graphs 
by constructive graph labeling of secondary nodes on the 
edges of vertex-graphs and by addition of such Spiro cen- 
ters. In this way, ring systems based on different sets of 
vertex-graphs and possessing different numbers of secon- 
dary nodes can be constructed exhaustively or under con- 
straints.‘” Duplicates are avoided prospectivelyTJO so that 
testing for duplicates (as was required for construction of 
vertex-graphs) is not necessary. 

If one assumes that all nodes in such ring systems are 
carbon atoms. then the ring systems constructed as just 
outlined above (with no nodes of degree >4) represent car- 
bocyclic skeletons. If, however, one desires ring systems 
comprised of any given variety of heteroatoms, then again 
constructive graph labeling with atom names, this time ap- 
plied to the nodes of the graphs rather than the edges. 
yields the desired results. The subsequent section outlines 
several applications of this method to construction of vari- 
ous types of ring systems. 

RESULTS AND DISCUSSION 

Vertex-Graphs. The numbers of trivalent vertex- 
graphs are given in Table I and the numbers of vertex- 
graphs possessing nodes of higher degree are given in Table 
II.‘6 The results for trivalent graphs confirm the existing 
tabulation&” of trivalent graphs through [lo], considering 
also the Peterson graph (7) as a supplement to ref 3. How- 

‘ever, we obtain 365 1121 graphs, rather than 360 as reported 
by Lederberg” and 362 reported by Balaban’s The three 
missing graphs are additional nonplanar,3J3 or gauche, 
graphs. 

Where our results can be compared to those of Balaban’” 

Table II. The Number of Vertex-Graphs Which Possess at Least One Node (Vertex) of Degree 2.1 

N0.N 
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130111 17 [lO"Ol] 6 
13 1111 291 [lOOll] 1 
[4001] 5 [l 1 0 1 l] 9 
[4101] 52 120101] 4 
142011 604 1.2 11 0 11 50 
[5 0 111 238 130011] 17 
[6001] 34 [300011 1 
[6101] 669 131001] 12 
[SO011 259 [3”001] 118 
[0201] 1 [40101] 59 
[0301] 3 [50001] 10 
[0401] 12 [51001] 1% 
[OOZl] 1 [700011 62 
[O 12 l] 8 [OllOl] 1 
[OOO‘L] 1 [O 2 10 l] 6 
[lo 121 6 100 1111 1 
[2002] 5 ~00002] 1 
(210 21 33 10 100 21 1 
\4002] 51 j20002] 5 

R An asterisk indicates agreement with l3alaban.” 
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for vertex-graphs containing nodes of degree 4, we are in 
complete agreement as to the total number of vertex- 
graphs and identity of each graph. This, however, is only a 
small subset of the total results, Table II. In some cases, we 
have constructed a given set of vertex-graphs by using dif- 
ferent paths of generation. For example, [2 1 0 Z] can be de- 
rived from [4 0 0 21 by collapse of two tertiary nodes, or 
from [2 3 0 l] by collapse of two quaternary nodes. Each 
such case has resulted in construction of the same set of 
graphs. For several sets of graphs possessing a single node 
of maximum degree we have verified the identities of the 
graphs using an independent generation scheme (not pre- 
sented in this paper) and have found agreement in all 
cases. We are reasonably confident that the program used 
accurately reflects the proven algorithms (see Appendixes 
A and B). 

The vertex-graphs, by themselves, do not serve to reveal 
much new chemistry. Balaban i1-14 has indicated the corre- 
spondence of some of his constructs to valence isomers, and 
the correspondence of trivalent graphs to [nlannulenes.” 
The graphs containing nodes of higher valence as such do 
not represent chemical classes of compounds as interesting 
as the annulenes, assuming some association of atom names 
with nodes of appropriate valence. These graphs are pri- 
marily useful for constructive expansion to ring systems 
possessing some number of secondary atoms. 

Ring Systems. Vertex-graphs possessing nodes of degree 
greater than 4 are used in constructive procedures27 for 
structure generation employing substructures possessing 
arbitrary free valence.15 The number of organic, covalently 
bonded compounds possessing elements of valence greater 
than 4 is small compared to the total number of com- 

,pounds. The number where such an element possesses a 
degree greater than 4 is smaller still. For example, phos- 
phorus is frequently formally pentavalent, but many orga- 
nophosphorus derivatives are compounds with only three 
or four (non-hydrogen atom) bonds to phosphorus. Ring 
systems based in part on nodes of valence greater than 4 
have analogs in structures of inorganic or organometallic 
compounds, for example, cobalt(II1) acetylacetonate, iron- 
(111 comulexes. and so forth. 

COMPUTER GENERATION OF VERTEX-GRAPHS 

Table III. The Number of Bicyclic Ring Systems’ for Three 
through Ten Carbon Atoms 

No. of Edge- 
C atoms fused Bridged Total” Spiro 

3 0 0 0 0 
4 1 0 1 0 
5 1 1 2 1 
6 2 1 3 1 
7 2 2 

t 
2 

8 3 3 2 
9 3 4 7 3 

10 4 5 9 3 

o Excluding structures with multiple bomls. ‘I Exclwting spirn forms and 
structures with multiple bonds. 

Carbocyclic Ring Systems. Carbocyclic ring systems are 
constructed by labeling edges of the vertex-graphs of prop- 
er degree of unsaturation with the desired number of sec- 
ondary nodes or by labeling vertex-graphs of lower unsatu- 
ration with both loops (which become Spiro rings) and biva- 
lent nodes. The only complication in this procedure is that 
multiple bonds are considered by the program as small 
rings (which results implicitly from our definition of a ring 
systemzl). Chemists would not regard cyclohexene as a bi- 
cyclic system, but the program does. Exclusion of unde- 
sired structures can now be accomplished’s by constraining 
the structure generation process. 

As an example, consider the problem of specification of 
possible bicyclic ring systems. Graph 3 and the “daisy” 
(251, a special case graph, are the only graphs with degree 
of unsaturation equal to 2 which are considered by the pro- 
gram in construction of bicyclics. The former graph (3) 
yields what are usually referred to as bicyclic svstems: 
graph 25 yields Spiro systems. The procedure is outlined in 
Scheme III for bicyclic svstems containing eight carbon 
atoms. Each possible partition of nodes among edges yields 
only one labeling in the cases of both 3 and 25, as all edges 
of 3 are equivalent, as are all edges of 25.7,10 If the nodes 
are only of one type, carbon, then 26-33 can be regarded as 
the desired carbocyclic systems. Thus from 3 we obtain cy- 
clooctene, 26, three edge-fused systems 27, 28 and 30, and 
two bridged systems, 29 and 31. The system of constraints 
allows us to classify these systems automatically. From 25 
we obtain 32, with an exocyclic double bond, and the two 
Spiro systems 33 and 34. 

The number of bicyclic ring systems for various numbers 
of carbon atoms, excluding multiple bonds, are given in 
Table III. Tricyclic ring systems comprised of carbon 
atoms are constructed in a similar fashion. using catalog 
entries [0 21, [2 11, [4 0] and 3 plus an additional loop con- 
taining bivalents or a single ring plus two loops with hiva- 
lents. Recently, a manual approach to the specification of 
tricyclic ring systems has appeared.‘” This approach uses a 
method based on bivalent-free graphs including those 
which contain “bridges” and loops. A series of rules is in- 
cluded which effectively allows manual graph labeling to be 
carried out to expand the graphs into complete structures. 
This approach is, however, restricted to tricyclic ring sys- 
tems. Our results (see below) are in agreement with the 
limited example presented.’ 28 The number of tricvclic ring 
systems for up to ten carbon atoms is presented-in Table 
IV. Again, systems with multiple bonds are not included. 
The tabulation is broken down into one category which in- 
cludes edge-fused and/or bridged systems, and a second 
category of Spiro forms. 

. 
We wish, however, in the remainder of this report, to 

focus attention on ring systems composed of more common 
elements, which involve almost exclusively ring systems 
based on vertex-graphs containing nodes of degree 3 and 4. 

The results for Cio are particularly interesting, as this 
group of ring systems contains adamantane and related 
systems which have been the topics of considerable earlier 
work.17J8~28 Using the constraints mentioned by Whitlock 
and Siefken, i.e., no multiple bonds and no three- or four- 
membered rings,17 we obtain in addition to the 16 struc- 
tures reported’: five additional structures, 35-39. 3.5 and 36 
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Table IV. Possible Tricyclic Ring Systems with up to Ten Table V. Some Examples of the Number of Ten-Atom 
Carbon Atoms Bicyclic Ring SystemsG 

Bridged 
No. of and/or 

c atoms edge-fused Spiro” Total 

3 0 0 0 
4 1 0 1 
5 3 0 3 
6 9 1 10 
7 20 5 25 
8 40 13 53 
9 70 27 97 

10 121 49 170 

a The Spiro category includes tricydic ring systems with one or two spire 
fusions. 

COITl- No. of Com- No. of 
position ring systems position ring systems 

Cl0 9 C\NO 274 (excluding 

:;:i 
36 iv-oxides) 

124 (98 excluding CSIOI 212 
peroxides) CS,N, 271 

::‘NN; 
45 C Si, 45 

195 CSi? 195 

a Excluding spire forms and systems with multiple bonds. 

Table VI. Examples of the Number of Heterocyclic Ring 
Systems Based on the Decalin Skeleton (41) and the 

Naphthalene Skeleton (42) 

38 39 - 

are derived from the single vertex-graph of two quaternary 
nodes, 40, by labeling the four edges of 40 with 2,2,2,2 and 
3,2,2,1 secondary nodes, respectively (other labelings yield 

@ 
40 

multiple bonds or three- or four-membered rings). Struc- 
tures 37-39, together with structures 3 and 4 of ref 17, 
make up the set of five graphs derived from the vertex- 
graph of one quadrivalent node and two trivalent nodes 
(24). These extra structures represent added complexities 
to the interconversion maps presented previously.‘7Js 
Structures 35-39 appear to be highly strained systems. 
37-39, however, do not seem less plausible than other iso- 
mers (structures 3 and 4 of ref 17) involving a quaternary 
center, which, interestingly, have strain energies (see struc- 
tures 6 and 8 of ref 18) comparable to other more “reason- 
able” structures. 35 and 36 do not appear to be known com- 
pounds, (They can be viewed as homologs of members of 
the propellane series, specifically of [3.2.l]propellane’a and 
[2.2.2]propellane.“o) The presence of an additional two-car- 
bon bridge in place of the single bond bridge in the last two 
compounds may result in structures with decreased stabili- 
ty. 

Higher n-cyclic ring systems are constructed in a similar 
way. Each increase in degree of unsaturation and in num- 
ber of atoms, of course, results in a greater variety of ver- 
tex-graphs which must be expanded. Thus, the number of 
possible ring systems increases extremely rapidly. For ex- 
ample, 5291 tetracyclic, C~Z, ring systems have been re- 
ported,“’ and an estimated 40,000 pentacyclic, Cia ring sys- 
tems exist.*O 

Heterocyclic Ring Systems. There are two avenues open 
to construction of heterocyclic ring systems depending on 
the particular classes of ring systems one desires. Either 
one wants all (or all, under some constraints) ring systems 
which can be constructed from a given number of carbons 
and/or heteroatoms or one wishes to examine ring systems 
based on a given skeleton, i.e., ring systems formed by sub- 
stituting a given set of atom names in all ways on the nodes 
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Set of Atom Labels Number of Ring Systems 

Decalin 
9 C’s, 1 0 2 
8 C’s, 2 O’s 10 (8 excluding peroxides) 
8 C’s, 1 S, 1 0 14 
7 C’s, 2 S’s, 1 0 42 

Naphthalene 
7 C’s, 3 N’s 14 
6 C’s, 4 N’s 22 
8 C’s, 2 Si’s 15 
7 C’s, 3 Si’s 32 
6 C’s, 4 Si’s 60 

of a given ring skeleton. The former can be accomplished 
using the structure generator; the latter is a node labeling 
problem. lo A brief example of both methods of construc- 
tion is given below to indicate the scope of possible hetero- 
cyclic ring systems. 

The number of bicyclic ring systems involving heteroat- 
oms is presented in Table V. This tabulation is for ten- 
atom ring systems and includes only multiple bond-free 
systems which contain no Spiro fusions. The number of 
possible ring systems possessing heteroatoms increases rap- 
idly with increasing numbers and degree of heteroatoms3* 

The results in Table V were produced by constructing 
ring systems as outlined in Scheme III. In this case, how- 
ever, the skeletons resulting from edge labeling (e.g., 26-31, 
Scheme III) must be further labeled with atom names. 
With only one atom type, e.g., carbon, only one structure 
results from this labeling as discussed previously. With a 
variety of atom types, several structures may result from 
the labeling for each of the skeletons 26-31. Bivalent atoms 
(0, S) may occupy any node position of degree 2: trivalent 
atoms (N) may occupy any node position of degree 2 or 3, 
and so forth. 

Examples of the number of ring systems based on a given 
ring skeleton are given in Table VI for heterocycles based 
on the decalin (41) or naphthalene (42) skeleton. These re- 

41 42 - - 

sults were produced bv labeling the nodes in the appropri- 
ate skeleton with the indicated set of labels (atom names), 
then counting the results. Other computational methods 
exist for determining the numbers, but not the identities of 
each structure.33 The differences in results for cases such as 
labeling of naphthalene with 7 C’s and 3 N’s vs. 7 C’s and 3 
Si’s (14 vs. 32, Table VI) result because a tetravalent silicon 
atom can occupy all node positions including the quater- 
nary ring junctions, whereas trivalent nitrogen cannot. 

a3 

CONCLUSIONS 

We have briefly outlined a method and some results for 
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construction of vertex-graphs and ring systems. This meth- 
od can be used to help define the scope of such sets of 
graphs and ring systems in organic chemistry. One could 
use the vertex-graphs and labelings thereof as a means of 
classification of ring systems which might have certain ad- 
vantages over other methods. Although we have no plans to 
do this ourselves, we are willing to discuss these aspects 
with interested persons. 

The program used in this study is available to a collabo- 
rative community of users via a nationwide computer net- 
work. For information about gaining access to the program, 
write to the authors or to Professor Joshua Lederberg, 
SUMEX Project, Department of Genetics, Stanford Medi- 
cal School, Stanford University, Stanford, California 94305. 

APPENDIX A 

We show here that every trivalent vertex-graph V with R 
> 2 nodes arises by our method of adding two secondary 
nodes and an edge between them in all distinct ways to the 
trivalent vertex-graphs with n - 2 nodes. We do this by 
proving that there is at least one edge e = (a,b) in V such 
that deleting e and “erasing” the resultant bivalent nodes a 
and b yield a trivalent vertex-graph V’ with n - 2 nodes, 
and, hence, V arises by applying our method to V’. 

The proof is based on a theorem due to Halin. Theo- 
rem (Halin, 1969): Every finite, simple, m-connected graph 
G either contains a node of valence m or at least one edge e 
such that the graph obtained from G by the deletion of e 
remains m-connected. 

Here, a graph G is called simple if it has no loops and no 
multiple edges and m-connected if there are at least m 
node-disjoint paths between any two distinct vertices in G. 
(A standard reference for basic graph-theoretical terminol- 
ogy and results is Berge’s “Graphs and Hypergraphs.“35) 

Because Halin’s theorem deals only with simple graphs, 
we must first consider the cases of trivalent vertex-graphs 
containing multiple (double) edges. If a trivalent vertex- 

c_ d 

E3 
44 

graph V, with n > 2 nodes, has a double edge between two 
nodes a and b (43), then the deletion of one of these edges 

and the erasure of a and b produces a loop-free, “bridge”- 
free graph (vertex-graph) V’ of n - 2 trivalent nodes (44). 
Indeed. the newly created edge (c,d) of V’ cannot be a loop, 
for this would imply c = d. If this were true. then V would 
contain the subgraph 45, and the edge (c,e) would be a 

COMPUTER GENERATION OF VERTEX-GRAPHS 

quires the presence of one of the two subgraphs 43 or 45, 
both of which contain multiple bonds). 

We observe that a connected, trivalent graph is P-con- 
nected, if and only if it has no “bridges.” This observation 
follows immediately from the characterization of a 2-con- 
netted graph as a connected graph with no cut nodes. 
Thus, if V is a simple, trivalent vertex-graph, the hypothe- 
sis of Halin’s theorem is satisfied, and, since V has no biva- 
lent nodes, it must have at least one edge with the desired 
property. 

Hence, all trivalent vertex-graph with n nodes will be 
produced by applying our method to the trivalent vertex- 
graphs with n - 2 nodes. 

APPENDIX B 

a 

B 

b 
c_(=d) 
e 

0 
45 

The following theorem shows that given two integers ml 
and rn2 with rnq 2 ml > 2, every [ns, tr4, . . . , nk] vertex- 
graph with k 2. ml + rn2 - 2 and n,1+,2-2 > 0, arises by 
applying our method of node collapsing to the [ns, , nml 
+ 1, . . . , nmp + 1, . . , nm,+m2-2 - 1, . . . , nk] vertex- 
graphs. Recall that a [na, n4, . , nk] vertex-graph is a ver- 
tex-graph with R; nodes of valence i, 3 I i 5 k. 

Theorem. Let V be a vertex-graph and x a node of V of 
valence m L 4, and let ml and rn2 be integers such that rn2 
2 ml > 2 and ml + m2 - 2 = m. Then there is a partition 
of the edges of V with endpoint n into two classes A1 and 
A2 with IAll = ml - 1 and IA21 = rn2 - 1 such that the 
graph V’, obtained from V by replacing x by an edge r = 
(ai,az) with the edges in A1 connected to al and those in 
A2 connected to (12, is also a vertex-graph. 

Proof. For any partition Al,Az such that both Ai and A2 
contain at least two edges, the graph V’ is connected, loop- 
free, and has no nodes of valence less than 3. Hence. we 
need only show that for some partition of this type, V’ is 
“bridge’‘-free. Note that a connected graph is “bridge’‘-free 
if and only if every edge lies on an elementary cycle, i.e., a 
cycle which passes through no node twice.35 

We form a partition Ai,Ac, of the edges of V with end- 
point n as follows. Consider the connected components of 
V obtained by deleting the node x and its incident edges 
from V. Since V is “bridge’‘-free, there are at least two 
edges in V from each of these components to x. If there is 
only one component, we assign any ml - 1 of the edges in 
V with endpoint Y to Al and the remaining of these edges 
to Aa, If there are two or more components. say Cl, CP, . , 
Cd, we assign one of the edges in V going from Ci to x to Ai 
and one of these edges to AZ. The remaining edges in V 
going to x we assign to A, and A? in any manner such that 
IAll = ml - 1 and IA21 = rnz - 1. We claim that for this 
partition, V’ is “bridge’‘-free. 

Lets = (c,d) be any edge in V’. 
Case 1. s is also an edge in V, say in the component C!,. 

Since V is “bridge’‘-free, s must lie on some elementary 
cycle y in V. If y does not use the node. I, then y is also an 
elementary cycle in V’. If y passes through x. then y must 
have precisely two edges with endpoint x, say t = (e,x) and 
u = (f,x). Now one of the following four-edge sets must be 
edges in V’: {(e,al), (f,a?)l, I(e,u2), (f,al)l, I(e,al), (f,al)l, 
f(e,uz), (f,uz)l. If, for example, the first edge set is in V’, 
then replacing the edges t and u in y by the edges (e,al), 
(ul,a2), and (a?,f) results in an elementary cycle in V’ con- 
taining s. A similar argument holds if one of the other edge 
sets is in V’. 

“bridge” violating the initial assumption that V is a vertex- 
graph. Neither can (c,d) of V’ (44) be a “bridge” for this 
would imply that both (a,~) and (b,d) are “bridges” in V 
(43). All other edges in V’ other than (c,d) are also edges in 
V, and are thus neither loops nor “bridges.” 

We now consider the case where V is a simple trivalent 
vertex-graph, and note that the edge deletion-node erasure 
procedure can yield no loops (the creation of a loop re- 

Case 2. s is not an edge in V. In this case s is either 
(ol,u2) or of the form (ai,e) or (az,e). Assume that s = 
(ai,e). Let Ci be the component containing e. There must 
be at least one node f in C, such that either the edge (f,u~) 

# .s is in V’ or the edge (f,an) # s is in V’. Note that it is 
possible that (I = e). Since C, is connected. there is a sim- 
ple path 7 (i.e., y uses no node twice) in C, going from e to 
f (if e = f, then y is the null path). The path y with either 
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the edge set {(f,a t), s1 or the edge set ](f,aa)~ (al,ad, sl lective Index. 

added is an elementary cycle in V’ containing s. A similar 
argument holds ifs = (a~). Ifs = (anas), then there must 
be two nodes e and f in Ci such that (ai,e) and (as,f) are 
edges in V’ (again, it is possible that (e = f)). Then any 
simple path in Ci from e to f with the edge set l(ai,e), s, 
(as,f)j added is an elementary cycle in V’ containing s. 
Hence, every edge s in v’ lies on some elementary cycle in 
V’, and V’ is “bridge’‘-free and thus is a vertex-graph. The 
vertex-graph V arises by collapsing the edge (ai,as) in V’. 
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